Precalculus 11

What is a geometric series?

- A geometric series is a sequence in which the terms are summed together.
 - The terms are separated by a "+" sign instead of a comma.

Remember: Arithmetic and geometric sequences are different in that:

- Arithmetic sequences ADD/SUB a constant (common difference, 'd')
- Geometric sequences MULT/DIV by a factor (common ratio, 'r')

Example 1: Find the sum for each geometric series.

а.	5+12.5+31.25+78.125+195.3125	b.	120 + 60 + 30 + 15 + 7.5 + 3.75 + 1.875 + 0.9375

The quicker way to get the answer is to look for patterns. Consider the following:

$S_n = a + ar + ar^2 + ar^3 + ar^4 + \dots + ar^{n-1}$	• This shows the sum for a
	finite/exact number of terms.
$r \times (S_n = a + ar + ar^2 + ar^3 + ar^4 + \dots + ar^{n-1})$	 Multiply whole equation by 'r'
$rS = ar + ar^{2} + ar^{3} + ar^{4} + ar^{n-1} + ar^{n}$	since each term increases by a
	common ratio, hence increasing
\mathbf{r}	the sum by a factor of ' r ' also.
$S_n = a + ar + ar^2 + ar^3 + ar^3 + \dots + ar^n$	• This 2 nd equation is a variation of
$-(rS_n = ar + ar^2 + ar^3 + ar^4 + \dots + ar^{n-1} + ar^n)$	the 1 st equation, so we simplify by
$S_n - rS_n = a - ar^n$	subtracting the 2 equations.
	• Factor out common terms on both
$S_{n}(1-r) = a(1-r^{n})$	sides of the equation.
	• Isolate S _n and you have the
$S_n = \frac{a\left(1 - r^n\right)}{\left(1 - r\right)}$	formula to find the sum of any finite geometric series

Example 2: Determine the sum of the following geometric series.

۵)	9+18+36+72+144+288+576+1152	b) $14 + 7 + 3.5 + 1.75 + 0.875 + 0.4375 + 0.21875$

Example 3: The sum of the first 10 terms of a geometric series is -29 524. What is the 5^{th} term if the common ratio is -3?

Example 4: Find the sum of: $6.5 + 26 + 104 + \ldots + 436207616$.

Example 5: A person is taking tetracycline for a chest infection. Each tablet contains 200 mg and about 12% of the mass remains in the body when the next tablet is taken. What is the mass of tetracycline in the body after 12 tablets?

Example 6: A ball is dropped from a height of 10 m. After each bounce it returns to 65% of its previous height. Determine the total vertical distance just before the 8th bounce.

Example 7: The sum of the 2^{nd} and 3^{rd} term in a geometric series is 45. The sum of the 4^{th} and 5^{th} term is 20. Determine the geometric sequence.

Homework: